

FORMIKE ELECTRONIC CO.,LTD

PRODUCT SPECIFICATION

TFT LCD MODULE

MODEL: KWH040ST03-F02 Version: 1.0

【 ◆ 】 Preliminary Specification

[] Finally Specification

CUSTOMER'S APPROVAL	
SIGNATURE:	DATA:

Designed by	R&D Checked by	Quality Department by	Approved by
DENG			

Prepared By:

FORMIKE ELECTRONIC CO.,LTD

Address :Room 14H, HanKing Building, 23# DengLiang Road, NanShan District, ShenZhen, 518054, China. TEL:(86) 755 88306921,88306931 FAX:(86) 755 88304615
Http://www.wandisplay.com

• This specification is subject to change without notice. Please contact FORMIKE or it's representative before designing your product based on this specification.

1/20 Issued Date:18-12-2013

Table Of Contents

List	Description	Page No.
0	Cover	1
0	Table Of Contents	2
1	Revision Record	3
2	General Description	4
3	External Dimensions	5
4	Interface Description	6
5	Absolute Maximum Ratings	7
6	Electrical Characteristics	8
7	Timing Characteristics	9
8	Backlight Characteristics	13
9	Optical Characteristics	14
10	Reliability Test Conditions And Methods	17
11	Inspection Standard	18
12	Handling Precautions	19
13	Precaution For Use	20

1. Revision record

VEV NO.	REV DATE	CONTENTS	Note
V1.0	2013-12-18	NEW ISSUE	
			() h
			,
		9	
	A		
	<i>ζ</i> λ.		
	· ·		
>			

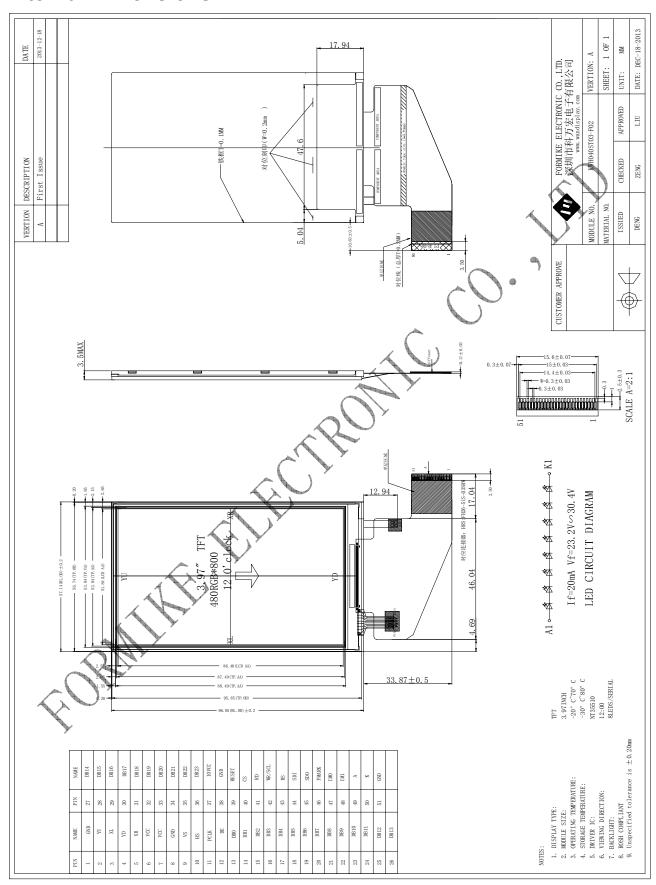
2. General Description

2.1 Description

KWH040ST03-F02 is a Transmissive type color active matrix liquid crystal display (LCD), which uses amorphous thin film transistor (TFT) as switching devices. This product is composed of a TFT LCD panel, driver IC, FPC,TP and backlight unit. The following table described the features of FORMIKE KWH040ST03-F02.

2.2 Application

Mobile phone, Multimedia products and other electronic Products Etc.


2.3 Features:

-eatures:		
Features	Description	UNITS
LCD type	3.97"TFT	
Dot arrangement	480 (RGB) ×800	dots
Driver IC	NT35510	
Color Depth	16.7M	
Interface	RGB ,MCU Interface	
View Direction	12 O'clock	
Module size	→ 57.14(W) ×96.85 (H)×3.50(T)	mm
Active area	51.84(W) ×86.4(H)	mm
Dot pitch	0.108 (W) ×0.108 (H)	mm
Back Light	8 White LED In serial	
With/Without TSP	With TSP	
Weight(g)	TBD	

www.wandisplay.com 4/20 Ver.1.0

3. External Dimensions

4. Interface Description

4. 11116116	ace Descr	iption				
PIN NO.	PIN NAME	DESCRIPTION				
1	GND	Ground.				
2	YU	Touch Panel Up Side Wire.				
3	XL	Touch Panel Left Side Wire.				
4	YD	Touch Panel Down Side Wire.				
5	XR	Touch Panel Right Side Wire.				
6-7	VCC	Power supply (+2.3V~+4.8V).				
8	GND	Ground.				
9	VS	Frame synchronizing signal for RGB interface operation. Fix to GND level when not in use.				
10	HS	Line synchronizing signal for RGB interface operation. Fix to GND level when not in use.				
11	PCLK	Dot clock signal for RGB interface operation Fix to GND level when not in use.				
12	DE	Data enable signal for RGB interface operation. Fix to GND level when not in use.				
13-36	DB0-DB23	24-Bit parallel data bus for 8080 system and RGB interface mode. Fix to GND level when not in use.				
37	IOVCC	Power supply Voltage for I/O Interface (+1.65V~+3.3V).				
38	GND	Ground.				
39	RESET	This signal will reset the device and must be applied to properly initialize the chip. Signal is active low.				
40	CS	Chip select input pin(" low" enable).				
41	RD	8080 system(RD). Serves as a read signal and MCU read data at the rising edge. Fix to GND when not in use.				
42	WR/SCL	8080 system(WR):Serves as a write signal and writes data at the rising edge. SCL: a synchronous clock in SPI Interface. Fix to GND level when not in use.				
43	RS	This pin is used to select "data or command" in the 8080 system interface When RS="1", data is selected. When RS="0", command is selected. Fix to GND when not in use.				
44	SDI	Serial input signal in SPI interface. The data is input on the rising edge of the SCL signal. Fix to GND when not in use.				
45	SDO	Serial output signal in SPI interface. The data is output on the rising edge of the SCL signal. Fix to open when not in use.				
46	FMARK	Tearing effect output pin to Synchronous MCU to frame writing. activated by S/W command. If not used, please open this pin.				
47	IMO	Interface type selection:				
48	IM1	IM1 IM0 SRAM Register 0 0 80-8bit MPU I/F80-8bit MPU I/F DB[7:0]				

		0	1	80-16bit MPU	I/F80-8bit MPU I/F DB[15:0]		
		1	0	80-24bit MPU	I/F80-8bit MPU I/F DB[23:0]		
		1	1	24bit RGB	RGB I/F DB[23:0]		
49	А	Pow	er suppl	y for LED backlight Anoc	de input.		
50	K	Pow	Power supply for LED backlight Cathode input.				
51	GND	Grou	ınd.	-			

5. Absolute Maximum Ratings

Symbol	Rating	Unit			
VDDA, VDDB,	-0.3 ~ +5.5	V			
VDDR,VDDAM					
VDDI	- 0.3 ~ +5.5	V			
DVDD,DIOPWR	-0.3 ~ +2.0	V			
AVDD-AVSS	-0.3 ~ +6.6	V			
AVEE-AVSS	+0.3 ~ -6.6	V			
VGH-VGLX	-0.3 ~ +33	// V			
(VGHO-VGLO)		/ //			
VIN	- 0.3 ~ VDDI + 0.3	V			
VO	- 0.3 ~ VDDI + 0.3	V			
HSSI_CLK_P/N,					
HSSI_DATA0_P/N,	10.3 ~ + 1.8	V			
HSSI_DATA1_P/N					
TO₽R	-40 ~ ±85	°C			
₩ STG	55 + +125	°C			
	VDDA, VDDB, VDDR,VDDAM VDDI DVDD,DIOPWR AVDD-AVSS AVEE-AVSS VGH-VGLX (VGHO-VGLO) VIN VO HSSI_CLK_P/N, HSSI_DATA0_P/N, HSSI_DATA1_P/N TOPR	VDDA, VDDB, -0.3 ~ +5.5 VDDI -0.3 ~ +5.5 DVDD,DIOPWR -0.3 ~ +2.0 AVDD-AVSS -0.3 ~ +6.6 AVEE-AVSS +0.3 ~ -6.6 VGH-VGLX -0.3 ~ +33 (VGHO-VGLO) -0.3 ~ VDDI + 0.3 VO -0.3 ~ VDDI + 0.3 HSSI_CLK_P/N, +0.3 ~ +1.8 HSSI_DATA1_P/N -40 ~ +85			

NOTE:

If the absolute maximum rating of even is one of the above parameters is exceeded even momentarily, the quality of the product may be degraded. Absolute maximum ratings, therefore, specify the values exceeding which the product may be physically damaged. Be sure to use the product within the range of the absolute maximum ratings.

6. Electrical Characteristics

.	Symbol Conditions		S	pecification	on		Related		
Parameter			MIN	TYP	MAX	Unit	Pins		
	Power & Operation Voltage								
Analog Operating voltage	VDD	Operating Voltage	2.3	3.7	4.8	٧	Note 1, 2		
Lania On anatina waltana	VDDI	I/O supply voltage	1.65	1.8	3.3	٧	Note 4 0		
Logic Operating voltage	VDDIL	I/O supply voltage	1.1	1.2	1.3	V	Note 1, 2		
		Input / Output							
Logic High level input voltage	VIH	VDDI=1.65~3.3V	0.7 VDDI	-	VDDI	V	Note 1, 2, 3		
Logic Low level input voltage	VIL	VDDI=1.65~3.3V	VSSI	-	0.3 VDDI	V	Note 1, 2, 3		
Logic High level output voltage	VOH	VDDI=1.65~3.3V IOH = -1.0mA	0.8 VDDI		VDDI		Note 1, 2, 5		
Logic Low level output voltage	VOL	VDDI=1.65~3.3V IOL = +1.0mA	VSSI		0.2 VDDI	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Note 1, 2, 5		
Logic High level leakage (Except MIPI/MDDI)	ILIH	Vin=0~VDDI			1	μΑ	Note 1, 2, 3		
Logic Low level leakage (Except MIPI/MDDI)	ILIL	Vin=0~VDDI	1-1	ת תו		μΑ	Note 1, 2, 3		
Logic High level leakage (MIPI/MDDI)		Vin=0~VDDAM				μА	Note 2, 8		
Logic Low level leakage (MIPI/MDDI)	LIL	Vin=0~VDDAM	(\cdot)		-	μΑ	Note 2, 8		
		DC/DC Converter Op	eration						
AVDD booster voltage	AVDD		4.5	-	6.5	V	Note 2, 7		
AVEE booster voltage	AVEE		-6.5	-	-4.5	V	Note 2, 7		
VCL booster voltage	VCL \		-2.5	-	-4.0	V	Note 2, 7		
VGH booster voltage	VGH	-	AVDD +VDDB	-	2AVDD -AVEE	٧	Note 2, 6		
VGLX booster voltage	VGLX	-	AVEE +VCL	-	2AVEE -AVDD	٧	Note 2, 6		
Voltage difference between VGH and VGLX	VGHL	VGH-VGLX	-	-	30	٧	Note 2		
Oscillator tolerance	ΔOSC	25 °C	-5	-	5	%			
		Source Driver							
	VGMP	-	3.0	-	6.3	V	Note 2		
Gamma reference voltage	VGSP	-	0.0	-	3.7	V	Note 2		
Gamma reference voltage	VGMN	-	-6.3	-	-3.0	V	Note 2		
	VGSN	-	-3.7	-	0.0	V	Note 2		
Output offset voltage	VOFSET	-	-	-	45	mV	Note 4		
Output deviation voltage	Vdev	Sout≥4.0V, Sout≥1.0V	-	-	20	mV	Note 4		
Super deviation voltage	, ac	1.0V <sout<4.0v< td=""><td>-</td><td>-</td><td>10</td><td>mV</td><td>Fig.7.5.2</td></sout<4.0v<>	-	-	10	mV	Fig.7.5.2		

V

7. Timing Characteristics.

7.1 Reset Timing Characteristics.

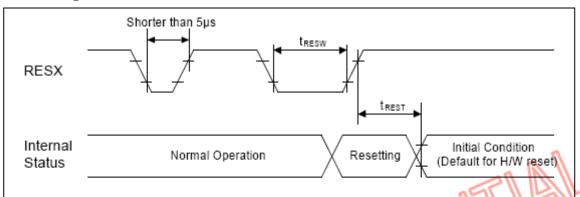
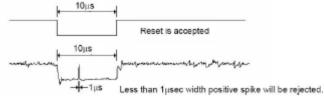


Fig. 7.6.12 Reset input timing

(VSS=VSSI=DVSS=0V, VDDI=1.65V to 3.3V, VDD=2.3V to 4.8V, Ta = -30 to 70 °C)


Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Description
	tresw	Reset "L" pulse width (Note 1)	10	יע- ז	-	μs	
RESX	t	Boost completed into State 20		u -	196	ms	When reset applied during Sleep In Mode
	trest Reset complete time (Note 2)	, <u>i</u>		120	ms	When reset applied during Sleep Out Mode	

Note 1) Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below.

RESX Pulse	Action
Shorter than 5µs	Reset Rejected
Longer than 10µs	Reset
Between 5µs and 10µs	Reset Start

- Note 2) During the resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In–mode) and then return to Default condition for H/W reset.
- Note 3) During Reset Complete Time, values in OTP memory will be latched to internal register during this period.

 This loading is done every time when there is H/W reset complete time (t_{REST}) within 5ms after a rising edge of RESX.
- Note 4) Spike Rejection also applies during a valid reset pulse as shown below:

Note 5) It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec

7.2. i80-System Interface Timing Characteristics.

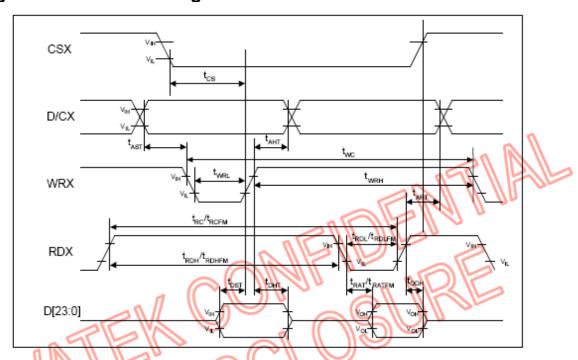


Fig. 7.6.1 Parallel interface characteristics (80-Series)

(VSS=VSSI=DVSS=0V, VDDI=1.65V to 3.3V, VDD=2.3V to 4.8V, Ta = -30 to 70°C)

Signal	Symbol	Parameter	MIN	MAX	Unit	Description
11/2	twc	Write cycle	33	-	ns	
WRX	twrn	Control pulse "H" duration	15	-	ns	
	twrL	Control pulse "L" duration	15	-	ns	
	trc	Read cycle (ID)	160	-	ns	
RDX(ID)	tпрн	Control pulse "H" duration (ID)	90	-	ns	When read ID data
	trol	Control pulse "L" duration (ID)	45	-	ns	
	trcfm	Read cycle (FM)	400	-	ns	When read from frame
RDX(FM)	trdhfm	Control pulse "H" duration (FM)	250	-	ns	memory
	trolfm	Control pulse "L" duration (FM)	150	-	ns	memory
	tast	Address setup time (Write)	0	-	ns	
D/CX	LAST	Address setup time (Read)	10	-	ns	
	t aht	Address hole time	2	-	ns	
	tost	Data setup time	15	-	ns	
	tont	Data hold time	10	-	ns	
D[17:0]	trat	Read access time (ID)	-	40	ns	
	tratem	Read access time (FM)	-	150	ns	
	tорн	Output disable time	5	-	ns	

Note 1) VDDI=1.65 to 3.3V, VDD=2.3 to 4.8V, VSS=VSSI=DVSS=0V, Ta=-30 to 70 °C (to +85 °C no damage) VDD means VDDA, VDDR, VDDB and VSS means VSSA, VSSR, VSSB

Note 2) The input signal rise time and fall time (tr, tf) is specified at 15 ns or less.

Logic high and low levels are specified as 20% and 80% of VDDI for Input signals.

www.wandisplay.com 10/20 Ver.1.0

7.3. SPI Interface Timing Characteristics.

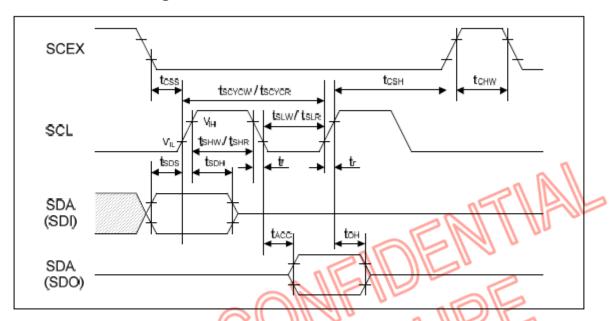


Fig. 7.6.2 3-pin serial interface characteristics

(VSS=VSS(=DVSS=0V, VDD(=1.65V to 3.3V, VDD=2.3V to 4.8V,Ta = -30 to 70 °C)

			11 //			7 10 4.07,14 - 30 10 70 07
Signal	Symbol	Parameter	MIN	MAX	Unit	Description
<	tscycw	Serial clock cycle (Write)	100	-	ns	
a (tsHw	SCL H" pulse width (Write)	40	-	ns	
// // /	tsuw	SCL "L" pulse width (Write)	40	-	ns	
MMC	/ tscycr	Serial clock cycle (Read GRAM)	300	-	ns	
SCL	tshr	SCL "H" pulse width (Read GRAM)	140	-	ns	
	tslR	SCL 'L" pulse width (Read GRAM)	140	-	ns	
	tscycr	Serial clock cycle (Read ID)	300	-	ns	
	tshr	SCL "H" pulse width (Read ID)	140	-	ns	
	tslR	SCL "L" pulse width (Read ID)	140	-	ns	
	tsos	Data setup time	20	-	ns	
SDI (SDO)	tsон	Data hold time	20	-	ns	
301 (300)	tacc	Access time	-	120	ns	
	tон	Output disable time	5	-	ns	
CSX	tchw	Chip select "H" pulse width	45	-	ns	
	tcss	Chip select setup time	20	-	ns	
	tсsн	Chip select hold time	50	-	ns	

Note 1) VDDI=1.65 to 3.3V, VDD=2.3 to 4.8V, VSS=VSSI=DVSS=0V, Ta=-30 to 70 °C (to +85 °C no damage) VDD means VDDA, VDDR, VDDB and VSS means VSSA, VSSR, VSSB

Note 2) The input signal rise time and fall time (tr, tf) is specified at 15 ns or less.

7.4. RGB Interface Timing Characteristics.

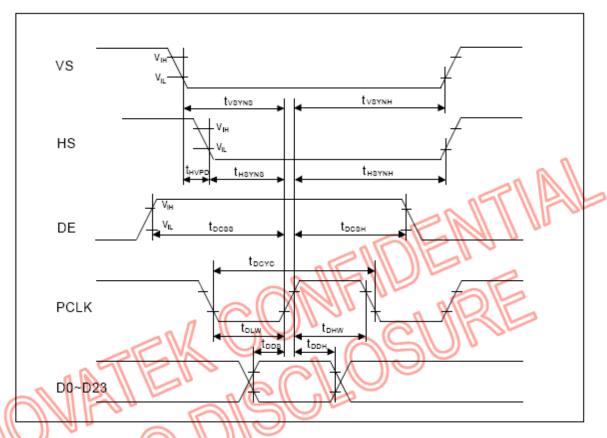
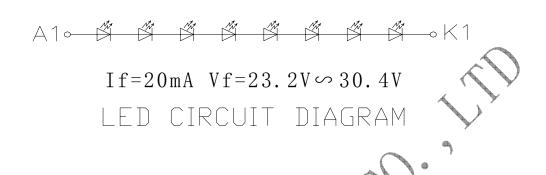


Fig. 7.6.4 RGB interface characteristics

(VSS=VSSI=DVSS=0V, VDDI=1.65V to 3.3V, VDD=2.3V to 4.8V,Ta = -30 to 70°C)

Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Description
VS	tvsyns	VSYNC setup time	10	-	-	ns	
V S	tvsynn	VSYNC hold time	10	-	-	ns	
	thsyns	HSYNC setup time	10	-	-	ns	
HS	tscycr	HSYNC hold time	10	-	-	ns	
	thypo	HSYNC to VSYNC falling edge	400	-	-	ns	
	tocyc	PCLK cycle time	33	-	125	ns	
DOL 14	touw	PCLK "L" pulse width	11	-	-	ns	
PCLK	tonw	PCLK "H" pulse width	11	-	-	ns	
	fDFREQ	PCLK frequency	8	-	30	MHz	
DE	tocss	DE setup time	10	-	,	ns	
DE	tocsh	DE hold Time	10	-	-	ns	
D0-D22	tops	RGB Data setup time	10	-	-	ns	
D0~D23	tоон	RGB Data hold time	10	-	-	ns	


Note 1) VDDI=1.65 to 3.3V, VDD=2.3 to 4.8V, VSS=VSSI=DVSS=0V, Ta=-30 to 70 °C (to +85 °C no damage) VDD means VDDA, VDDR, VDDB and VSS means VSSA, VSSR, VSSB

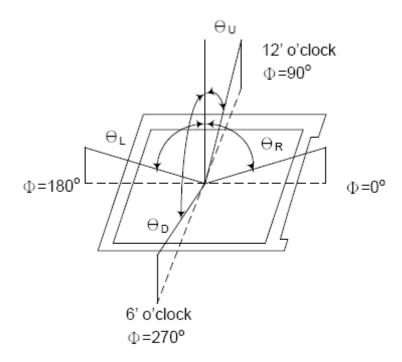
Note 2) The input signal rise time and fall time (tr, tf) is specified at 15 ns or less.

8. Backlight Characteristics.

FORMIKE

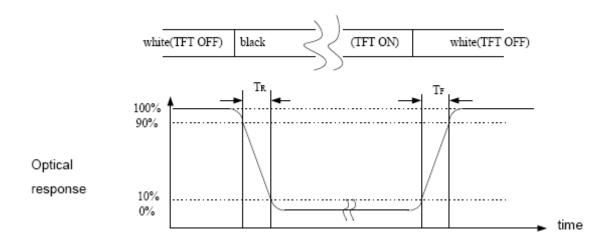
					*		
Item	Symbol	MIN	TYP	MAX	JUNIT	Test Condition	Note
Supply Voltage	Vf	23.2	25	30.4	V	lf=20 mA	-
Supply Current	lf	-	20	1	mA	-	-
Reverse Voltage	Vr	-		5	V	10uA	
Power dissipation	Pd	-	500	-	mW	-	
Luminous Intensity for L CM		- (280	-	Cd/m ²	If=20 mA	
Uniformity for LCM	-	80	<u> </u>	-	%	If=20 mA	
Life Time	- /	50000	-	-	Hr	If=20 mA	-
Backlight Color		x		Wh	ite		

www.wandisplay.com 13/20 Ver.1.0

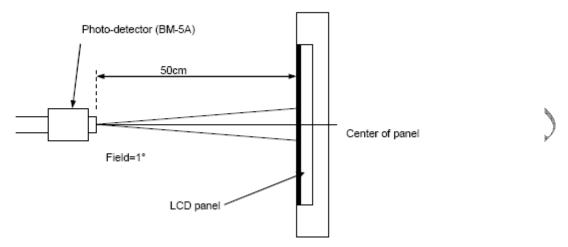

9. Optical Characteristics

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note		
Transmittance (with Polarizer)		T (%)		3.6	4.0	ı	_	Transmittance base on using EWV Polarizer , Reference Only		
Transmittance (without Polari		T (%)		9.56	10.39	_	_			
Contrast		CR		560	700	_		(1)(2)		
	Rising	T _R	Θ=0	_	4	8		(1)(3)		
Response time	Falling	T _F	Normal	_	12	24	msec			
Color gamut S(%)			viewing	54	60	_	%			
	White	W _x	angle	0.266	0.296	0.326				
		W _y		0.295	0.325	0.355				
Calaa	Red	R _x		0.617	0.647	0.677				
Color chromaticity		R _Y		0.299	0.329	0.359		(1)(4)		
(CIE1931)	Green	G _x		0.247	0.277	0.307		CF glass		
(,		G _Y		0.519	0.549	0.579				
	Blue	B _x		0.104	0.134	0.164				
		B _Y		0.093	0.123	0.152				
Viewing angle	Hor.	Hor	Hor (ΘL		60	70	_		(1)(4)
		Θ _R		60	70	_		Viewing Angle		
	Ver.	,,	Θυ	CR>10	60	70	_		base on using EWV Polarizer	
		ΘD		40	60	_		Reference Only		
Optima View D	irection		12 o'clock				(5)			

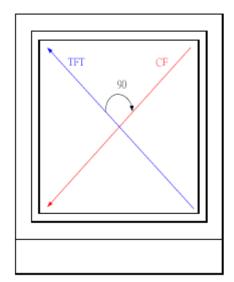
V



Note (1) Definition of Viewing Angle:


Note (2) Definition of Contrast Ratio (CR): measured at the center point of panel

Note (3) Definition of Response Time : Sum of T_R and T_F



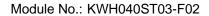
Note (4) Definition of optical measurement setup

Note (5) Rubbing Direction (The different Rubbing Direction will cause the different optima view direction.

TFT Face up

EOFT.

www.wandisplay.com 16/20 Ver.1.0

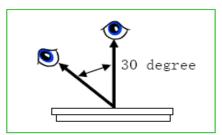


10. Reliability Test Conditions And Methods

NO.	TEST ITEMS	TEST CONDITION	INSPECTION AFTER TEST				
1	High Temperature Storage	8 0°C±2°C×200Hours					
2	Low Temperature Storage	-30°C±2°C×200Hours					
3	High Temperature Operating	70 °C±2°C×120Hours	Inspection after 2~4hours storage at room temperature, the samples				
4	Low Temperature Operating	-20℃±2℃/120Hours					
(5)	Temperature Cycle(Storage)	- 30 °C ± 2 °C ← 25 °C 80 °C ± 2 °C (30min) (5min) (30min) 1 cycle Total 10 cycle	should be free from defects: 1,Air bublle in the LCD. 2,Sealleak. 3,Non-display. 4,Missing segments.				
6	Damp Proof Test	50 °C±5°C×90%RH×120Hours	5,Glass crack.				
7	Vibration Test	Frequency:10Hz~55Hz~10Hz Amplitude:1.5M X,Y,Z direction for total 3hours (Packing Condition)	6,Current IDD is twice higher than initial value. 7, The surface shall be free from damage. 8, The electric				
8	Drooping Test	Drop to the ground from 1M height one time every side of carton. (Packing Condition)	Characteristics requirements shall be satisfied.				
9	ESD Test	$\begin{array}{ccc} \textbf{Voltage:} & \pm & 8 \text{KV, R:} 330 \\ \Omega & , \text{C:} 150 \text{PF, Air} \\ \text{Mode, } 10 \text{times} \end{array}$					

REMARK:

- 1,The Test samples should be applied to only one test item.
- 2, Sample side for each test item is 5~10pcs.
- 3, For Damp Proof Test, Pure water (Resistance $> 10 \text{M}\Omega$) should be used.
- 4, In case of malfunction defect caused by ESD damage, if it would be recovered to normal state after resetting, it would be judge as a good part.
- 5, EL evaluation should be excepted from reliability test with humidity and temperature: Some defects such as black spot/blemish can happen by natural chemical reaction with humidity and Fluorescence EL has.
- 6, Failure Judgment Criterion: Basic Specification Electrical Characteristic, Mechanical Characteristic, Optical Characteristic.



11.Inspection Standard

This standard apply to TFT module specification.

1. Inspection condition:

Under daylight lamp 20 $\sim\!40\text{W}_{\odot}$ product distance inspector'eye 30cm,incline degree 30 $^{\circ}$ $_{\circ}$

2. Inspection standard

NO.	Item		Rate				
		① Bright I ② Dark Do Main TFT I - NG if their - Damaged counted as - Dots	nere's full Dot defect. ged less than the size of sub-pixel is not				
2.1	Dot	area size (mm		Acceptable number			
		Φ≤0	.10		ignore		
		0.10<⊕	≤0.15		3	minor	
		0.15 <Ф	≤0.20		2		
		0.25<Ф	≤0.25		1		
	0.25< Ф 0				0		
		Siz	Size (mm)		Acceptable number		
		line L≤4.0 0.03 <v< td=""><td>€0.03</td><td>ignore</td><td></td></v<>		€0.03	ignore		
2.2	line			W≤0.04 2			
				W≤0.05	1		
			0.05 <w< td=""><td>Treat with dot non-conformance</td><td></td></w<>		Treat with dot non-conformance		

12. Handling Precautions

12.1 Mounting method

The LCD panel of FORMIKE ELECTRONIC CO,.LTD. module consists of two thin glass plates with polarizes which easily be damaged. And since the module in so constructed as to be fixed by utilizing fitting holes in the printed circuit board.

Extreme care should be needed when handling the LCD modules.

12.2 Caution of LCD handling and cleaning

When cleaning the display surface, Use soft cloth with solvent [recommended below] and wipe lightly

- İsopropyl alcohol
- Ethyl alcohol

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface. Do not use the following solvent:

- Water
- Aromatics

Do not wipe ITO pad area with the dry or hard materials that will damage the ITO patterns Do not use the following solvent on the pad or prevent it from being contaminated:

- Soldering flux
- Chlorine (Cl) , Salfur (S)

If goods were sent without being sili8con coated on the pad, ITO patterns could be damaged due to the corrosion as time goes on.

If ITO corrosion happen by miss-handling or using some materials such as Chlorine (CI), Salfur (S) from customer, Responsibility is on customer.

12.3 Caution against static charge

The LCD module use C-MOS LSI drivers, so we recommended that you:

Connect any unused input terminal to Vdd or Vss, do not input any signals before power is turned on, and ground your body, work/assembly areas, assembly equipment to protect against static electricity.

12.4 packing

- Module employ LCD elements and must be treated as such.
- Avoid intense shock and falls from a height.
- To prevent modules from degradation, do not operate or store them exposed direct to sunshine or high temperature/humidity

12.5 Caution for operation

- It is an indispensable condition to drive LCD's within the specified voltage limit since the higher voltage then the limit cause the shorter LCD life.
- An electrochemical reaction due to direct current causes LCD's undesirable deterioration, so that the use of direct current drive should be avoided.
- Response time will be extremely delayed at lower temperature then the operating temperature range and on the other hand at higher temperature LCD's how dark color in them. However those phenomena do not mean malfunction or out of order with LCD's, which will come back in the specified operation temperature.
- If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.
- A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit.
 Usage under the maximum operating temperature, 50%Rh or less is required.

12.6 storage

In the case of storing for a long period of time for instance, for years for the purpose or replacement use, the following ways are recommended.

- Storage in a polyethylene bag with the opening sealed so as not to enter fresh air outside in it. And with no
 desiccant.
- Placing in a dark place where neither exposure to direct sunlight nor light's keeping the storage temperature range.
- Storing with no touch on polarizer surface by the anything else.
 It is recommended to store them as they have been contained in the inner container at the time of delivery from us

12.7 Safety

- It is recommendable to crash damaged or unnecessary LCD's into pieces and wash off liquid crystal by either of solvents such as acetone and ethanol, which should be burned up later.
- When any liquid leaked out of a damaged glass cell comes in contact with your hands, please wash it off well with soap and water

13. Precaution For Use

13.1

A limit sample should be provided by the both parties on an occasion when the both parties agreed its necessity. Judgment by a limit sample shall take effect after the limit sample has been established and confirmed by the both parties.

13.2

On the following occasions, the handing of problem should be decided through discussion and agreement between responsible of the both parties.

- When a question is arisen in this specification
- When a new problem is arisen which is not specified in this specifications
- When an inspection specifications change or operating condition change in customer is reported to FORMIKE ELECTRONIC CO, LTD, and some problem is arisen in this specification due to the change
- When a new problem is arisen at the customer's operating set for sample evaluation in the customer site.

