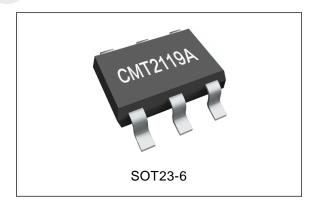
CMT2119A

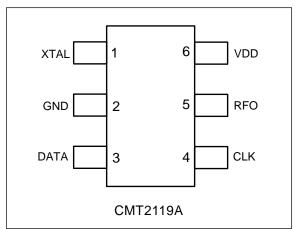
240 – 960 MHz (G)FSK/OOK Transmitter

Features

- Optional Chip Feature Configuration Schemes
 - · On-Line Registers Configuration
 - Off-Line EEPROM Programming
- Frequency Range: 240 to 960 MHz
- FSK, GFSK and OOK Modulation
- Symbol Rate:
 - 0.5 to 100 ksps (FSK/GFSK)
 - 0.5 to 30 ksps (OOK)
- Deviation: 1.0 to 200 kHz
- 1-wire Interface for Transmission Control
- 2-wire Interface for Registers Accessing and EEPROM Programming
- Output Power: -10 to +13 dBm
- Supply Voltage: 1.8 to 3.6 V
- Sleep Current: < 20 nA
- FCC/ETSI Compliant
- RoHS Compliant
- 6-pin SOT23-6 Package

Descriptions


The CMT2119A is a high performance, highly flexible, low-cost, single-chip (G)FSK/OOK transmitter for various 240 to 960 MHz wireless applications. It is a part of the CMOSTEK NextGenRF[™] family, which includes a complete line of transmitters, receivers and transceivers. The CMT2119A provides the simplest way to control the data transmission. The transmission is started when an effective level turnover is detected on the DATA pin, while the transmission action will stop after the DATA pin holding level low for a defined time window. The chip features can be configured in two different ways: setting the configuration registers through the 2-wire interface, or programming the embedded EEPROM with CMOSTEK USB Programmer and the RFPDK. The device operates from a supply voltage of 1.8 V to 3.6 V, consumes 27.6 mA (FSK @ 868.35 MHz) when transmitting +10 dBm output power, and only leak 20 nA when it is in sleep state. The CMT2119A transmitter together with the CMT2219A receiver enables a robust RF link.


Applications

- Low-Cost Consumer Electronics Applications
- Home and Building Automation
- Remote Fan Controllers
- Infrared Transmitter Replacements
- Industrial Monitoring and Controls
- Remote Lighting Control
- Wireless Alarm and Security Systems
- Remote Keyless Entry (RKE)

Ordering Information

Part Number	Frequency	Package	MOQ		
CMT2119A-ESR	868.35 MHz	SOT23-6	3,000 pcs		
More Ordering Info: See Page 18					

Typical Application

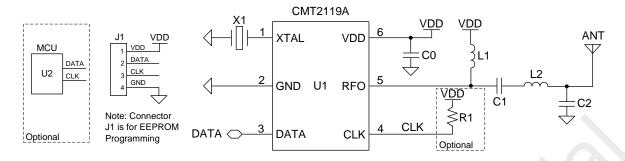


Figure 1. CMT2119A Typical Application Schematic

Table 1. BOM of 433.92/868.35 MHz Low-Cost Application

Decimates	Descriptions	Value				Unit	Manufacturer	
Designator	Descriptions	433.92 MHz	868.35 MHz	Unit	Wanuracturer			
U1	CMT2119A, 240 – 960 MHz (G)FSK/OOK transmitter			-	CMOSTEK			
U2	Optional MCU for on-line configuration		-	-	-			
R1	Optional pull-up resistor on CLK pin	1.0		kΩ	Samsung			
X1	±20 ppm, SMD32*25 mm crystal	26		MHz	EPSON			
C0	±20%, 0402 X7R, 25 V	0	.1	uF	Murata GRM15			
C1	±5%, 0402 NP0, 50 V	82	220	pF	Murata GRM15			
C2	±5%, 0402 NP0, 50 V	9	3.9	pF	Murata GRM15			
L1	±5%, 0603 multi-layer chip inductor	180	100	nΗ	Murata LQG18			
L2	±5%, 0603 multi-layer chip inductor	27	8.2	nΗ	Murata LQG18			

Abbreviations

Abbreviations used in this data sheet are described below

AN	Application Notes	оок	On-Off Keying
BOM	Bill of Materials	PA	Power Amplifier
BSC	Basic Spacing between Centers	PC	Personal Computer
BW	Bandwidth	PCB	Printed Circuit Board
DC	Direct Current	PLL	Phase Lock Loop
EEPROM	Electrically Erasable Programmable Read-Only	PN	Phase Noise
	Memory	RBW	Resolution Bandwidth
ESD	Electro-Static Discharge	RCLK	Reference Clock
ESR	Equivalent Series Resistance	RF	Radio Frequency
GUI	Graphical User Interface	RFPDK	RF Product Development Kit
IC	Integrated Circuit	RoHS	Restriction of Hazardous Substances
LDO	Low Drop-Out	Rx	Receiving, Receiver
Max	Maximum	SOT	Small-Outline Transistor
MCU	Microcontroller Unit	TBD	To Be Determined
Min	Minimum	Tx	Transmission, Transmitter
MOQ	Minimum Order Quantity	Тур	Typical
NP0	Negative-Positive-Zero	XO/XOSC	Crystal Oscillator
OBW	Occupied Bandwidth	XTAL	Crystal

Table of Contents

1.	Electrical Cha	aracteristics	5
	1.1 Recomm	nended Operating Conditions	5
	1.2 Absolute	Maximum Ratings	5
	1.3 Transmit	tter Specifications	6
	1.4 Crystal C	Oscillator	7
2.	Pin Description	ions	8
3.	Typical Perfo	ormance Characteristics	9
		cation Schematics	
		st Application Schematic	
		SI Compliant Application Schematic	
5.	Functional D	escriptions	12
		N	
		ion, Frequency, Deviation and Symbol Rate	
		led EEPROM and RFPDK	
		Configuration	
		mplifier	
		ping	
		States and Control Interface	
	•	x Enabled by DATA Pin Rising Edge	
		x Enabled by DATA Pin Falling Edge	
	5.8 Crystal C	Oscillator and RCLK	17
6.	Ordering Info	ormation	18
7.	Package Out	line	19
8.	Top Marking		20
	8.1 CMT211	9A Top Marking	20
9.	Other Docum	nentations	21
		hange List	
11	Contact Infor	rmation	22

1. Electrical Characteristics

 V_{DD} = 3.3 V, T_{OP} = 25 $^{\circ}$ C, F_{RF} = 868.35 MHz, FSK modulation, output power is +10 dBm terminated in a matched 50 Ω impedance, unless otherwise noted.

1.1 Recommended Operating Conditions

Table 2. Recommended Operation Conditions

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operation Voltage Supply	V_{DD}		1.8		3.6	V
Operation Temperature	T _{OP}		-40		85	$^{\circ}$
Supply Voltage Slew Rate			1			mV/us

1.2 Absolute Maximum Ratings

Table 3. Absolute Maximum Ratings^[1]

Symbol	Conditions	Min	Max	Unit
V_{DD}		-0.3	3.6	V
V _{IN}		-0.3	V _{DD} + 0.3	V
TJ		-40	125	$^{\circ}$ C
T _{STG}		-50	150	$^{\circ}$ C
T _{SDR}	Lasts at least 30 seconds		255	$^{\circ}$ C
	Human Body Model (HBM)	-2	2	kV
	@ 85 °C	-100	100	mA
	V _{DD} V _{IN} T _J T _{STG}	V _{DD} V _{IN} T _J T _{STG} T _{SDR} Lasts at least 30 seconds Human Body Model (HBM)	V _{DD} -0.3 V _{IN} -0.3 T _J -40 T _{STG} -50 T _{SDR} Lasts at least 30 seconds Human Body Model (HBM) -2	V _{DD} -0.3 3.6 V _{IN} -0.3 V _{DD} + 0.3 T _J -40 125 T _{STG} -50 150 T _{SDR} Lasts at least 30 seconds 255 Human Body Model (HBM) -2 2

Note:

[1]. Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Caution! ESD sensitive device. Precaution should be used when handling the device in order to prevent permanent damage.

1.3 Transmitter Specifications

Table 4. Transmitter Specifications

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Frequency Range ^[1]	F _{RF}		240		960	MHz
Synthesizer Frequency	_	F _{RF} < 500 MHz		198		Hz
Resolution	F _{RES}	F _{RF} > 500 MHz		397		Hz
O and all Date	OD	FSK/GFSK	0.5		100	ksps
Symbol Rate	SR	ООК	0.5		30	ksps
(G)FSK Modulation Deviation Range	F _{DEV}		1		200	kHz
Bandwidth-Time Product	ВТ	GFSK modulation	-	0.5	•	, -
Maximum Output Power	P _{OUT(Max)}			+13		dBm
Minimum Output Power	P _{OUT(Min)}			-10		dBm
Output Power Step Size	P _{STEP}			1	<u> </u>	dB
OOK PA Ramping Time ^[2]	t _{RAMP}		0		1024	us
		OOK, 0 dBm, 50% duty cycle		6.7		mA
		OOK, +10 dBm, 50% duty cycle		13.4		mA
Current Consumption		OOK, +13 dBm, 50% duty cycle		17.4		mA
@ 433.92 MHz	DD-433.92	FSK, 0 dBm, 9.6 ksps	>	10.5		mA
		FSK, +10 dBm, 9.6 ksps		23.5		mA
		FSK, +13 dBm, 9.6 ksps		32.5		mA
		OOK, 0 dBm, 50% duty cycle		8.0		mA
		OOK, +10 dBm, 50% duty cycle		15.5		mA
Current Consumption		OOK, +13 dBm, 50% duty cycle		19.9		mA
@ 868.35 MHz	DD-868.35	FSK, 0 dBm, 9.6 ksps		12.3		mA
		FSK, +10 dBm, 9.6 ksps		27.6		mA
		FSK, +13 dBm, 9.6 ksps		36.1		mA
Sleep Current	I _{SLEEP}			20		nA
Frequency Tune Time	t _{TUNE}			370		us
		100 kHz offset from F _{RF}		-80		dBc/Hz
Phase Noise @ 433.92	PN _{433.92}	600 kHz offset from F _{RF}		-98		dBc/Hz
MHz		1.2 MHz offset from F _{RF}		-107		dBc/Hz
		100 kHz offset from F _{RF}		-74		dBc/Hz
Phase Noise @ 868.35	PN _{868.35}	600 kHz offset from F _{RF}		-92		dBc/Hz
MHz		1.2 MHz offset from F _{RF}		-101		dBc/Hz
Harmonics Output for	H2 _{433.92}	2 nd harm @ 867.84 MHz, +13 dBm P _{OUT}		-52		dBm
433.92 MHz ^[3]	H3 _{433.92}	3 rd harm @ 1301.76 MHz, +13 dBm P _{OUT}		-60		dBm
Harmonics Output for	H2 _{868.35}	2 nd harm @ 1736.7 MHz, +13 dBm P _{OUT}		-67		dBm
868.35 MHz ^[3]	H3 _{868.35}	3 rd harm @ 2605.05 MHz, +13 dBm P _{OUT}		-55		dBm
OOK Extinction Ration				60		dB

Notes

- [1]. The frequency range is continuous over the specified range.
- [2]. 0 and 2^n us, n = 0 to 10, when set to "0", the PA output power will ramp to its configured value in the shortest possible
- [3]. The harmonics output is measured with the application shown as Figure 10.

1.4 Crystal Oscillator

Table 5. Crystal Oscillator Specifications

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Crystal Frequency ^[1]	F _{XTAL}		26	26	26	MHz
Crystal Tolerance ^[2]				±20		ppm
Load Capacitance ^[3]	C _{LOAD}		12		20	pF
Crystal ESR	Rm				60	Ω
XTAL Startup Time ^[4]	t _{XTAL}			400		us

Notes:

- [1]. The CMT2119A can directly work with external 26 MHz reference clock input to XTAL pin (a coupling capacitor is required) with amplitude 0.3 to 0.7 Vpp.
- [2]. This is the total tolerance including (1) initial tolerance, (2) crystal loading, (3) aging, and (4) temperature dependence. The acceptable crystal tolerance depends on RF frequency and channel spacing/bandwidth.
- [3]. The required crystal load capacitance is integrated on-chip to minimize the number of external components.
- [4]. This parameter is to a large degree crystal dependent.

2. Pin Descriptions

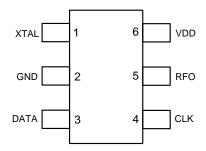


Figure 2. CMT2119A Pin Assignments

Table 6. CMT2119A Pin Descriptions

Pin Number	Name	I/O	Descriptions
1	VTAI	-	26 MHz single-ended crystal oscillator input or
<u> </u>	1 XTAL I		External 26 MHz reference clock input
2	GND	I	Ground
	DATA	10	Data input to be transmitted or
3	DATA	10	Data pin to access the embedded EEPROM
4	CLK	I	Clock pin to access the embedded EEPROM
5	RFO	0	Power amplifier output
6	VDD	I	Power supply input

3. Typical Performance Characteristics

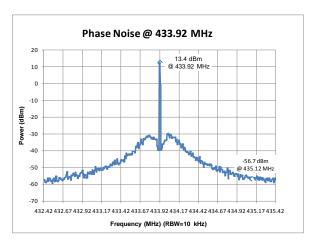


Figure 3. Phase Noise, $F_{RF} = 433.92$ MHz, $P_{OUT} = +13$ dBm, Unmodulated

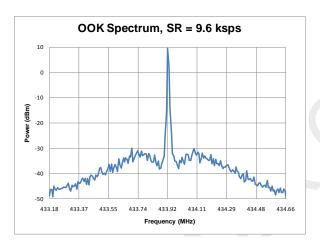


Figure 5. OOK Spectrum, SR = 9.6 ksps, $P_{\text{OUT}} = +10 \text{ dBm}, t_{\text{RAMP}} = 32 \text{ us}$

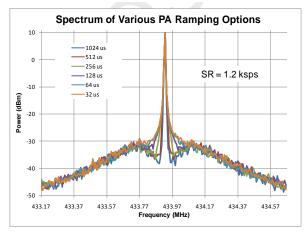


Figure 7. Spectrum of PA Ramping, $SR = 1.2 \text{ ksps}, P_{OUT} = +10 \text{ dBm}$

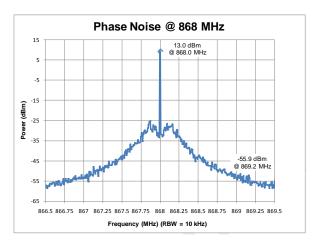


Figure 4. Phase Noise, $F_{RF} = 868 \text{ MHz}$, $P_{OUT} = +13 \text{ dBm}$, Unmodulated

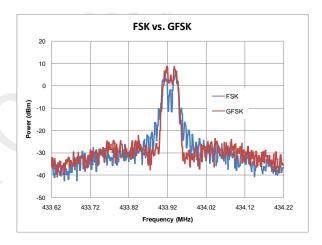


Figure 6. FSK/GFSK Spectrum, $SR = 9.6 \text{ ksps}, F_{DEV} = 15 \text{ kHz}$

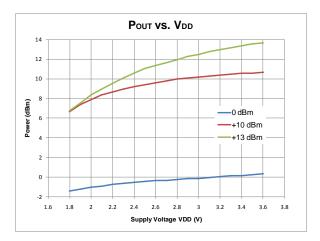


Figure 8. Output Power vs. Supply Voltages, $F_{RF} = 433.92 \text{ MHz}$

4. Typical Application Schematics

4.1 Low-Cost Application Schematic

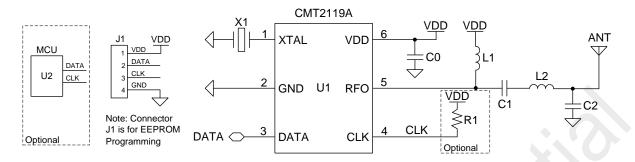


Figure 9. Low-Cost Application Schematic

Notes:

L2

- 1. Connector J1 is a must for the CMT2119A EEPROM access during development or manufacture.
- 2. An external MCU U2 is necessary if on-line register configuration is required.
- 3. A 1.0 k Ω pull-up resistor R1 is recommended to enhance the robustness of the chip. If the driving source for the EEPROM programming is not strong enough, the R1 should be removed during the EEPROM Programming.
- 4. The general layout guidelines are listed below. For more design details, please refer to "AN101 CMT211xA Schematic and PCB Layout Design Guideline"
 - Use as much continuous ground plane metallization as possible.
 - Use as many grounding vias (especially near to the GND pins) as possible to minimize series parasitic inductance between the ground pour and the GND pins.
 - Avoid using long and/or thin transmission lines to connect the components.
 - Avoid placing the nearby inductors in the same orientation to reduce the coupling between them.
 - Place C0 as close to the CMT2119A as possible for better filtering.

±5%, 0603 multi-layer chip inductor

5. The table below shows the BOM of 433.92/868.35 MHz Low-Cost Applications. For the BOM of 315/915 MHz application, please refer to "AN101 CMT211xA Schematic and PCB Layout Design Guideline".

Dani'amatan		Value		1 411 41 4		11	
Designator	Descriptions	433.92 MHz	868.35 MHz	Unit	Manufacturer		
U1	CMT2119A, 240 – 960 MHz (G)FSK/OOK transmitter		-	-	CMOSTEK		
U2	Optional MCU for on-line configuration		-	-	-		
R1	Optional pull-up resistor on CLK pin	1	.0	kΩ	Samsung		
X1	±20 ppm, SMD32*25 mm crystal	2	26	MHz	EPSON		
C0	±20%, 0402 X7R, 25 V	0	.1	uF	Murata GRM15		
C1	±5%, 0402 NP0, 50 V	82	82 220		Murata GRM15		
C2	±5%, 0402 NP0, 50 V	9	3.9	pF	Murata GRM15		
L1	±5%, 0603 multi-layer chip inductor	180	100	nΗ	Murata LQG18		

27

8.2

nΗ

Table 7. BOM of 433.92/868.35 MHz Low-Cost Application

Murata LQG18

4.2 FCC/ETSI Compliant Application Schematic

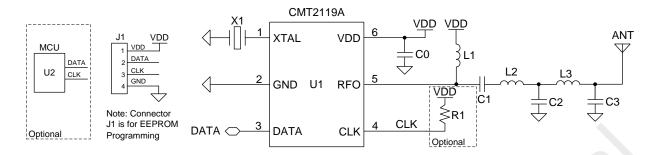


Figure 10. FCC/ETSI Compliant Application Schematic

Notes:

- 1. Connector J1 is a must for the CMT2119A EEPROM access during development or manufacture.
- 2. An external MCU U2 is necessary if on-line register configuration is required.
- 3. A 1.0 k Ω pull-up resistor R1 is recommended to enhance the robustness of the chip. If the driving source for the EEPROM programming is not strong enough, the R1 should be removed during the EEPROM Programming.
- 4. The general layout guidelines are listed below. For more design details, please refer to "AN101 CMT211xA Schematic and PCB Layout Design Guideline".
 - Use as much continuous ground plane metallization as possible.
 - Use as many grounding vias (especially near to the GND pins) as possible to minimize series parasitic inductance between the ground pour and the GND pins.
 - Avoid using long and/or thin transmission lines to connect the components.
 - Avoid placing the nearby inductors in the same orientation to reduce the coupling between them.
 - Place C0 as close to the CMT2119A as possible for better filtering.
- 5. The table below shows the BOM of 433.92/868.35 MHz FCC/ETSI Compliant Application. For the BOM of 315 and 915 MHz application, please refer to "AN101 CMT211xA Schematic and PCB Layout Design Guideline".

Table 8. BOM of 433.92/868.35 MHz FCC/ETSI Compliant Application

	Possinting		ue			
Designator	Descriptions	433.92 MHz	868.35 MHz	Unit	Manufacturer	
U1	CMT2119A, 240 – 960 MHz (G)FSK/OOK transmitter		-	-	CMOSTEK	
U2	Optional MCU for on-line configuration		-	-	-	
R1	Optional pull-up resistor on CLK pin	1.0		kΩ	Samsung	
X1	±20 ppm, SMD32*25 mm crystal	26		MHz	EPSON	
C0	±20%, 0402 X7R, 25 V	0	.1	uF	Murata GRM15	
C1	±5%, 0402 NP0, 50 V	68	68	pF	Murata GRM15	
C2	±5%, 0402 NP0, 50 V	15	9.1	pF	Murata GRM15	
C3	±5%, 0402 NP0, 50 V	15	8.2	pF	Murata GRM15	
L1	±5%, 0603 multi-layer chip inductor	180 100		nΗ	Murata LQG18	
L2	±5%, 0603 multi-layer chip inductor	36 8.2		nΗ	Murata LQG18	
L3	±5%, 0603 multi-layer chip inductor	18	8.2	nΗ	Murata LQG18	

5. Functional Descriptions

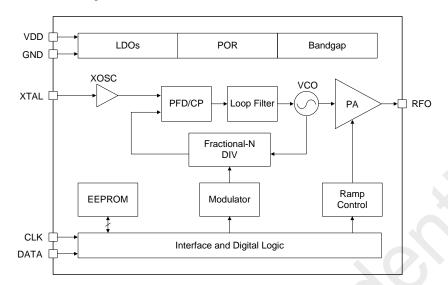


Figure 11. CMT2119A Functional Block Diagram

5.1 Overview

The CMT2119A is a high performance, highly flexible, low-cost, single-chip (G)FSK/OOK transmitter for various 240 to 960 MHz wireless applications. It is part of the CMOSTEK NextGenRF[™] family, which includes a complete line of transmitters, receivers and transceivers. The chip is optimized for the low system cost, low power consumption, battery powered application with its highly integrated and low power design.

The functional block diagram of the CMT2119A is shown in the figure above. The CMT2119A is based on direct synthesis of the RF frequency, and the frequency is generated by a low-noise fractional-N frequency synthesizer. It uses a 1-pin crystal oscillator circuit with the required crystal load capacitance integrated on-chip to minimize the number of external components. Every analog block is calibrated on each Power-on Reset (POR) to the internal voltage reference. The calibration can help the chip to finely work under different temperatures and supply voltages. The CMT2119A requires only 1 wire for the external MCU or encoder to send in the data and control the transmission. The input data will be modulated and sent out by a highly efficient PA which output power can be configured from -10 to +13 dBm in 1 dB step size.

The user can directly use the CMT2119A default configuration for immediate demands. If that cannot meet the system requirement, on-line register configuration and off-line EEPROM programming configuration are available for the user to customize the chip features. The on-line configuration means there is an MCU available in the application to configure the chip registers through the 2-wire interface, while the off-line configuration is done by the CMOSTEK USB Programmer and the RFPDK. After the configuration is done, only 1-wire interface is required for the external MCU or encoder to send in the data and control the transmission The CMT2119A operates from 1.8 to 3.6 V so that it can finely work with most batteries to their useful power limits. It only consumes 15.5 mA (OOK @ 868.35 MHz) / 27.6 mA (FSK @ 868.35 MHz) when transmitting +10 dBm power under 3.3 V supply voltage.

5.2 Modulation, Frequency, Deviation and Symbol Rate

The CMT2119A supports GFSK/FSK modulation with the symbol rate up to 100 ksps, as well as OOK modulation with the symbol rate up to 30 ksps. The supported deviation of the (G)FSK modulation ranges from 1 to 200 kHz. The CMT2119A continuously covers the frequency range from 240 to 960 MHz, including the license free ISM frequency band around 315 MHz, 433.92 MHz, 868.35 MHz and 915 MHz. The device contains a high spectrum purity low power fractional-N frequency synthesizer with output frequency resolution better than 198 Hz when the frequency is less than 500 MHz, and is about 397 Hz

when the frequency is larger than 500 MHz. See the table below for the modulation, frequency and symbol rate specifications.

Parameter	Value	Unit
Modulation	(G)FSK/OOK	-
Frequency	240 to 960	MHz
Deviation	1 to 200	kHz
Frequency Resolution (F _{RF} < 500 MHz)	198	Hz
Frequency Resolution (F _{RF} > 500 MHz)	397	Hz
Symbol Rate (FSK/GFSK)	0.5 to 100	ksps
Symbol Rate (OOK)	0.5 to 30	ksps

Table 9. Modulation, Frequency and Symbol Rate

5.3 Embedded EEPROM and RFPDK

The RFPDK (RF Products Development Kit) is a very user-friendly software tool delivered for the user configuring the CMT2119A in the most intuitional way. The user only needs to fill in/select the proper value of each parameter and click the "Burn" button to complete the chip configuration. No register access and control is required in the application program. See the figure below for the accessing of the EEPROM and Table 10 for the summary of all the configurable parameters of the CMT2119A in the RFPDK.

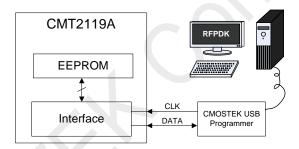


Figure 12. Accessing Embedded EEPROM

For more details of the CMOSTEK USB Programmer and the RFPDK, please refer to "AN103 CMT211xA-221xA One-Way RF Link Development Kits Users Guide". For the detail of CMT2119A configurations with the RFPDK, please refer to "AN122 CMT2119A Configuration Guideline".

Table 10. Configurable Parameters in RFPDK

Category	Parameters	Descriptions	Default	Mode
RF Settings	Frequency	To input a desired transmitting radio frequency in the range from 240 to 960 MHz. The step size is 0.01 MHz.	868.35 MHz	Basic Advanced
	Modulation	The option is FSK or GFSK and OOK. FSK		Basic Advanced
	Deviation	The FSK frequency deviation. The range is from 1 to 100 kHz.	uency deviation. The range is from 35 kHz	
	Symbol Rate	The GFSK symbol rate. The user does not need to specified symbol rate for FSK and OOK modulation.	2.4 ksps	Basic Advanced
	Tx Power	To select a proper transmitting output power from -10 dBm to +14 dBm, 1 dB margin is given above +13 dBm.	+13 dBm	Basic Advanced
	Xtal Load	On-chip XOSC load capacitance options: from 10 to 22 pF. The step size is 0.33 pF.	15 pF	Basic Advanced
	Data Representation	To select whether the frequency "Fo + Fdev" represent data 0 or 1. The options are: 0: F-high 1: F-low, or 0: F-low 1: F-high.	0: F-low 1: F-high	Advanced
	PA Ramping	To control PA output power ramp up/down time for OOK transmission, options are 0 and 2 ⁿ us (n from 0 to 10).	0 us	Advanced
Transmitting Settings	Start by	Start condition of a transmitting cycle, by Data Pin Rising/Falling Edge.	Data Pin Rising Edge	Advanced
	Stop by	Stop condition of a transmitting cycle, by Data Pin Holding Low for 2 to 90 ms.	Data Pin Holding Low for 2 ms	Advanced

5.4 On-line Configuration

The on-line configuration means there is an MCU available in the application to configure the chip registers through the 2-wire interface (CLK and DATA). The value of the registers, which is originally copied from the EEPROM at the chip's power-up, will remain its value until part or all of the registers are modified by the external MCU. The register value will be lost after the chip's power-down, and re-configuration is necessary when it is powered up again.

Please note that the DATA pin is the only pin required by the transmission control, and it is also reused as the data port of the 2-wire interface for register access and EEPROM programming. For the detail of the register configuration, please refer to "AN122 CMT2119A Configuration Guideline".

5.5 Power Amplifier

A highly efficient single-ended Power Amplifier (PA) is integrated in the CMT2119A to transmit the modulated signal out. Depending on the application, the user can design a matching network for the PA to exhibit optimum efficiency at the desired output power for a wide range of antennas, such as loop or monopole antenna. Typical application schematics and the required BOM are shown in "Chapter 4 Typical Application Schematic". For the schematic, layout guideline and the other detailed information please refer to "AN101 CMT211xA Schematic and PCB Layout Design Guideline".

The output power of the PA can be configured by the user within the range from -10 dBm to +13 dBm in 1 dB step size using the CMOSTEK USB Programmer and RFPDK.

5.6 PA Ramping

When the PA is switched on or off quickly, its changing input impedance momentarily disturbs the VCO output frequency. This process is called VCO pulling, and it manifests as spectral splatter or spurs in the output spectrum around the desired carrier frequency. By gradually ramping the PA on and off, PA transient spurs are minimized. The CMT2119A has built-in PA ramping configurability with options of 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 and 1024 us, as shown in Figure 13. These options are only available when the modulation type is OOK. When the option is set to "0", the PA output power will ramp up to its configured value in the shortest possible time. The ramp down time is identical to the ramp up time in the same configuration.

CMOSTEK recommends that the maximum symbol rate should be no higher than 1/2 of the PA ramping "rate", as shown in the formula below.

$$SR_{Max} \le 0.5 * \left(\frac{1}{t_{RAMP}} \right)$$

In which the PA ramping "rate" is given by $(1/t_{RAMP})$. In other words, by knowing the maximum symbol rate in the application, the PA ramping time can be calculated by formula below.

$$t_{RAMP} \le 0.5 * \left(\frac{1}{SR_{MAX}}\right)$$

The user can select one of the values of the t_{RAMP} in the available options that meet the above requirement. If somehow the t_{RAMP} is set to be longer than "0.5 * (1/SR_{Max})", it will possibly bring additional challenges to the OOK demodulation of the Rx device. For more detail of calculating t_{RAMP} , please refer to "AN122 CMT2113/19A Configuration Guideline".

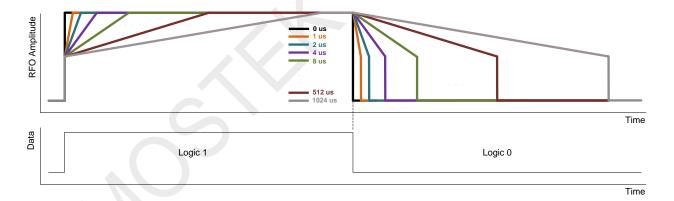


Figure 13. PA Ramping Time

5.7 Working States and Control Interface

The CMT2119A has following 4 different working states: SLEEP, XO-STARTUP, TUNE and TRANSMIT.

SLEEP

When the CMT2119A is in the SLEEP state, all the internal blocks are turned off and the current consumption is minimized to 20 nA typically. The interface is ready to sense a valid rising or falling edge on DATA pin to start a transmitting cycle.

XO-STARTUP

After the CMT2119A received the valid control signal, it will go into the XO-STARTUP state, and the internal XO starts to work. The user has to wait for the t_{XTAL} to allow the XO to get stable. The t_{XTAL} is to a large degree crystal dependent. A typical value of t_{XTAL} is provided in the Table 11.

TUNE

The frequency synthesizer will tune the CMT2119A to the desired frequency in the time t_{TUNE} . The PA can be turned on to transmit the incoming data only after the TUNE state is done, before that the incoming data will not be transmitted.

TRANSMIT

The CMT2119A starts to modulate and transmit the data coming from the DATA pin. After the DATA pin is driven to low for the time t_{STOP} (can be configured from 20 to 90 ms in 10 ms step size through the RFPDK), the transmission will be ended and the CMT2119A will go back to the SLEEP state, waiting for the next transmitting cycle.

The transmission can be enabled by either "DATA Pin Rising Edge" or "DATA Pin Falling Edge". See the Table 11, Figure 14 and Figure 15 for the timing requirement of each working state in the 2 different modes.

Parameter	Symbol	Min	Тур	Max	Unit
XTAL Startup Time [1]	t _{XTAL}		400		us
Time to Tune to Desired Frequency	t _{TUNE}		370		us
Hold Time After Rising Edge	t _{HOLD}	10			ns
Time to Stop the Transmission ^[2]	t _{STOP}	2		90	ms

Table 11. Timing in Different Working States

Notes:

- [1]. This parameter is to a large degree crystal dependent.
- [2]. Configurable from 2 to 9 in 1 ms step size and 20 to 90 ms in 10 ms step size.

5.7.1 Tx Enabled by DATA Pin Rising Edge

As shown in the figure below, once the CMT2119A detects a rising edge on the DATA pin, it goes into the XO-STARTUP state. The user has to pull the DATA pin high for at least 10 ns (t_{HOLD}) after detecting the rising edge, as well as wait for the sum of t_{XTAL} and t_{TUNE} before sending any useful information (data to be transmitted) into the chip on the DATA pin. The logic state of the DATA pin is "don't' care" from the end of t_{HOLD} till the end of t_{TUNE} . In the TRANSMIT state, PA sends out the input data after they are modulated. The user has to pull the DATA pin low for t_{STOP} in order to end the transmission.

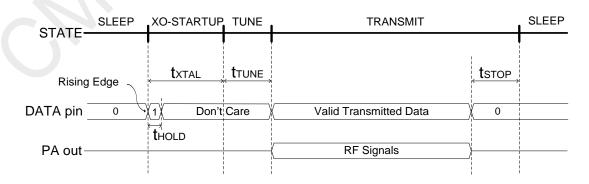


Figure 14. Transmission Enabled by DATA Pin Rising Edge

5.7.2 Tx Enabled by DATA Pin Falling Edge

As shown in the figure below, once the CMT2119A detects a falling edge on the DATA pin, it goes into XO-STARTUP state and the XO starts to work. During the XO-STARTUP state, the DATA pin needs to be pulled low. After the XO is settled, the CMT2119A goes to the TUNE state. The logic state of the DATA pin is "don't' care" during the TUNE state. In the TRANSMIT state, PA sends out the input data after they are modulated. The user has to pull the DATA pin low for t_{STOP} in order to end the transmission. Before starting the next transmit cycle, the user has to pull the DATA pin back to high.

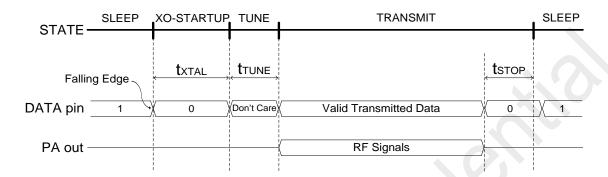


Figure 15. Transmission Enabled by DATA Pin Falling Edge

5.8 Crystal Oscillator and RCLK

The CMT2119A uses a 1-pin crystal oscillator circuit with the required crystal load capacitance integrated on-chip. Figure 16 shows the configuration of the XTAL circuitry and the crystal model. The recommended specification for the crystal is 26 MHz with \pm 20 ppm, ESR (Rm) < 60 Ω , load capacitance C_{LOAD} ranging from 12 to 20 pF. To save the external load capacitors, a set of variable load capacitors C_L is built inside the CMT2119A to support the oscillation of the crystal.

The value of load capacitors is configurable with the CMOSTEK USB Programmer and RFPDK. To achieve the best performance, the user only needs to input the desired value of the XTAL load capacitance C_{LOAD} of the crystal (can be found in the datasheet of the crystal) to the RFPDK, then finely tune the required XO load capacitance according to the actual XO frequency. Please refer to "AN103 CMT211xA-221xA One-Way RF Link Development Kits Users Guide" for the method of choosing the right value of C_{L} .

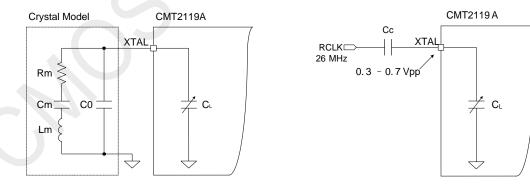


Figure 16. XTAL Circuitry and Crystal Model

Figure 17. RCLK Circuitry

If a 26 MHz RCLK (reference clock) is available in the system, the user can directly use it to drive the CMT2119A by feeding the clock into the chip via the XTAL pin. This further saves the system cost due to the removal of the crystal. A coupling capacitor is required if the RCLK is used. The recommended amplitude of the RCLK is 0.3 to 0.7 Vpp on the XTAL pin. Also, the user should set the internal load capacitor C_L to its minimum value. See Figure 17 for the RCLK circuitry.

6. Ordering Information

Table 12. CMT2119A Ordering Information

Part Number	Descriptions	Package Type	Package Option	Operating Condition	MOQ / Multiple
CMT2119A-ESR ^[1]	240-960 MHz (G)FSK/OOK Transmitter	SOT23-6	Tape & Reel	1.8 to 3.6 V, -40 to 85 ℃	3,000

Notes:

Visit www.cmostek.com/products to know more about the product and product line.

Contact sales@cmostek.com or your local sales representatives for more information.

^{[1]. &}quot;E" stands for extended industrial product grade, which supports the temperature range from -40 to +85 $^{\circ}$ C. "S" stands for the package type of SOT23-6 for this product.

[&]quot;R" stands for the tape and reel package option, the minimum order quantity (MOQ) for this option is 3,000 pieces.

7. Package Outline

The 6-pin SOT23-6 illustrates the package details for the CMT2119A. The table below lists the values for the dimensions shown in the illustration.

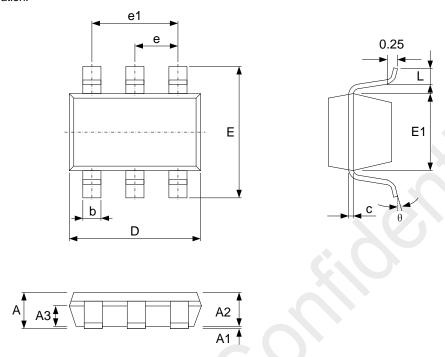


Figure 18. 6-Pin SOT23-6

Table 13. 6-Pin SOT23-6 Package Dimensions

0	Size (millimeters)				
Symbol	Min	Тур	Max		
A	_	_	1.35		
A1	0.04	_	0.15		
A2	1.00	1.10	1.20		
A3	0.55	0.65	0.75		
b	0.38	_	0.48		
С	0.08	_	0.20		
D	2.72	2.92	3.12		
E	2.60	2.80	3.00		
E1	1.40	1.60	1.80		
е	0.95 BSC				
e1	1.90 BSC				
L	0.30	_	0.60		
θ	0	_	8°		

8. Top Marking

8.1 CMT2119A Top Marking

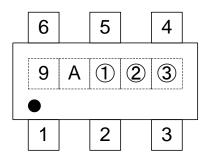


Figure 19. CMT2119A Top Marking

Table 14. CMT2119A Top Marking Explanation

Top Mark	9A①②③
Mark Method	Laser
Font Size	0.6 mm, right-justified
1 st letter	9, represents CMT2119
2 nd letter	A: represents revision A
3 rd – 5 th letter	①②③: Internal reference for data code tracking, assigned by the assembly house

9. Other Documentations

Table 15. Other Documentations for CMT2119A

Brief	Name	Descriptions	
AN101	CMT211xA Schematic and PCB Layout Design Guideline	Details of CMT211xA PCB schematic and layout design rules, RF matching network and other application layout design related issues.	
AN122	CMT2119A Configuration Guideline	Details of configuring CMT2119A features on the RFPDK, and the on-line configuration guideline for CMT2119A.	
AN103	CMT211xA-221xA One-Way RF Link Development Kits Users Guide	User's Guides for CMT211xA/CMT221xA Development Kits, including Evaluation Board and Evaluation Module, CMOSTEK USB Programmer and RFPDK.	

10. Document Change List

Table 16. Document Change List

Rev. No.	Chapter	Description of Changes	Date
0.6	All	Initial Released	2014-12-05

11. Contact Information

CMOSTEK Microelectronics Co., Ltd.

Room 202, Honghai Building, Qianhai Road. Nanshan District

Shenzhen, Guangdong, China PRC

Zip Code: 518000 Tel: 0755 - 83235017 Fax: 0755 - 82761326 Sales: <u>sales@cmostek.com</u>

Technical support: support@cmostek.com

www.cmostek.com

Copyright. CMOSTEK Microelectronics Co., Ltd. All rights are reserved.

The information furnished by CMOSTEK is believed to be accurate and reliable. However, no responsibility is assumed for inaccuracies and specifications within this document are subject to change without notice. The material contained herein is the exclusive property of CMOSTEK and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of CMOSTEK. CMOSTEK products are not authorized for use as critical components in life support devices or systems without express written approval of CMOSTEK. The CMOSTEK logo is a registered trademark of CMOSTEK Microelectronics Co., Ltd. All other names are the property of their respective owners.