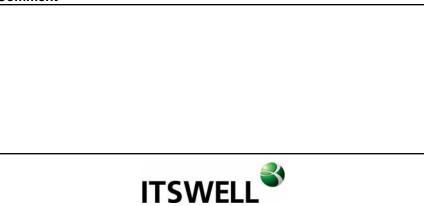


SPECIFICATION


Product : Topview 3528 Red SMD LED

Part No. : IWS-L3512-UR-K1

Date : 2010. 04. 19 Ver. 2.0

Proposed By	Checked By	Checked By	Checked By	Approval

Comment

ITSWELL Co., Ltd 58B-4L, 626-3 Gojan-dong, Namdong-gu, Incheon 405-817 KOREA TEL:+82-32-813-1801, FAX:+82+32-816-1900 URL: http://www.itswell.com,

IWS-L3512-UR-K1	Version of 2.0	PAGE: 1 / 10
IWS-L3512-UR-K1	Version of 2.0	PAGE: 1 / 10

1. Features

- 1 Chip High-Luminosity SMD LED
- 3.5 x 2.8 x 1.9 mm (L x W x H), Small Size Surface Mount Type
- Wide Viewing Angle
- Long Operating Life

2. Applications

- Automotive: Backlight in Dashboard and Switch
- Lighting Device: Indicator, General Lighting
- Camera Flash, Hand Carrier Flash
- General Use

Unit : mm, Tolerance : ±0.1mm **(2)** \sim (1) ()3.27 0.8 0.8 3.5 [Top view] [Bottom view] 6. [1] •---+ [2] Anode Cathode 3.5 [Side view] [Circuit diagram]

3. Outline Drawing and Dimension

Note

1. All dimensions are in millimeters

2. All dimensions without tolerances are for reference only

IWS-L3512-UR-K1	Version of 2.0	PAGE: 2 / 10
-----------------	----------------	--------------

4. Absolute Maximum Ratings(T_a = 25 $\,^\circ\!\!\mathbb{C}$)

Parameter	Symbol	Value	Unit
Power Dissipation	Pd	72	mW
Continuous Forward Current	lF	30	mA
Peak Forward Current *1	I _{FP}	100	mA
Operating Temperature	T _{opr}	-30 ~ 85	Ĵ
Storage Temperature	T _{stg}	-40 ~100	Ĵ
Soldering Temperature	T _{sol}	260 (5sec)	Ĵ

%1 Duty ratio = 1/10, Pulse width = 0.1ms

5. Electro-optical Characteristics(T_a = 25 $\,^{\circ}\!\!\!\!\mathrm{C}$)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit.
Forward Voltage	VF	I _F = 20 mA	1.8	2.1	2.4	V
Reverse Current	I _R	V _R = 5 V	-	-	10	μA
Luminous Intensity *2	Iv	I _F = 20 mA	325	-	1200	mcd
Dominant Wavelength *3	W _D	I _F = 20 mA	618	-	635	nm
Viewing Angle *4	2 ⊖ _{1/2}	I _F = 20 mA	-	120	-	0

^{**2} Luminous Intensity is tested by a tester calibrated by CAS 140B(CIE LED_B) and has an accuracy of 10% ^{**3} Dominant Wavelength has an accuracy of $\pm 2nm$

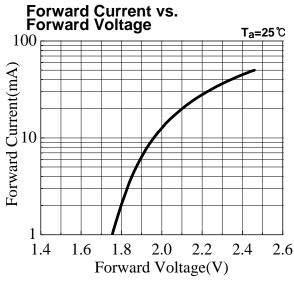
^{**4} Viewing Angle is the angle until 50% of brightness measured from the front part of LED.

5.1 Luminous Intensity Rank

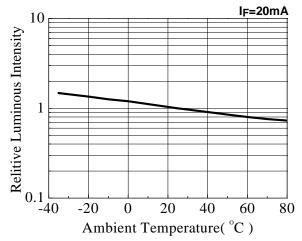
Rank	Luminous Intensity (mcd)
F	325~425
G	425~555
Н	555~720
J	720~935
К	935~1200

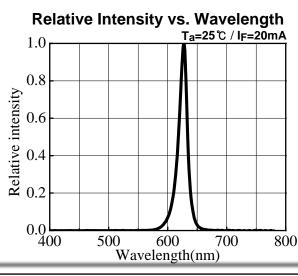
5.3 Dominant Wavelength Rank

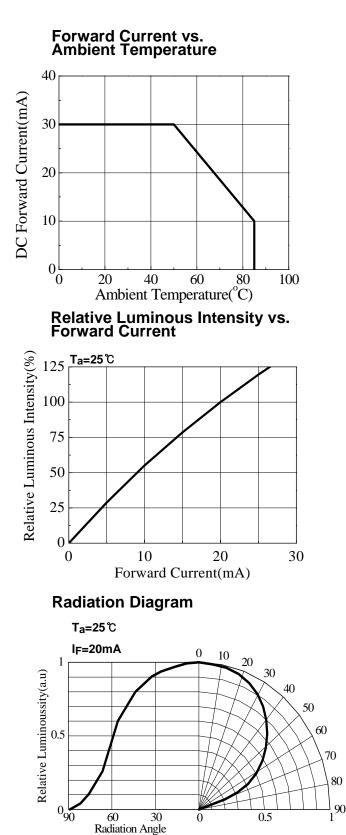
Rank	Dominant Wavelength (nm)
а	618 ~ 635

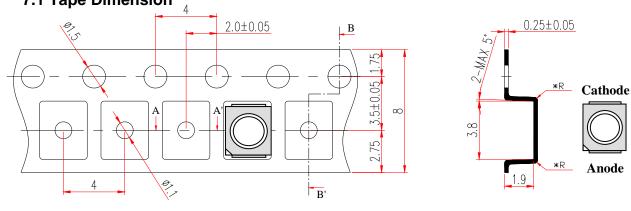

5.2 Forward Voltage Rank

Rank	Forward Voltage (V)
1	1.8 ~ 2.4

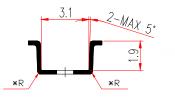

IWS-L3512-UR-K1	Version of 2.0	PAGE: 3/10
-----------------	----------------	------------



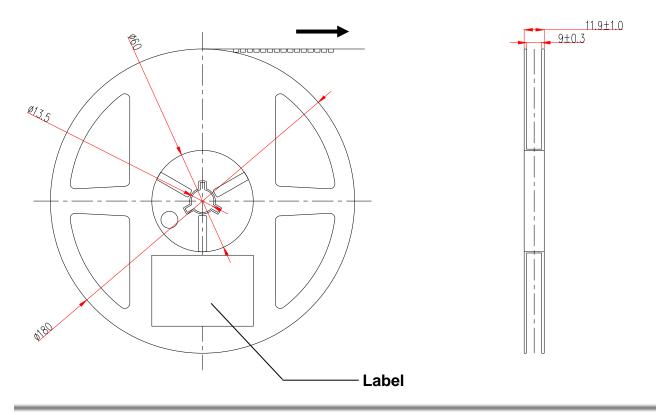

6. Typical Characteristics Curves



IWS-L3512-UR-K1



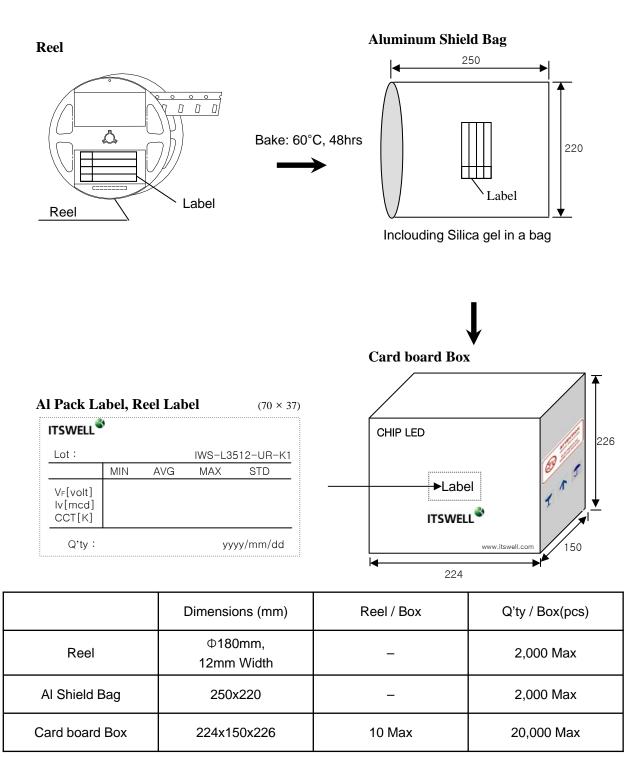
7. Dimension of Tape / Reel



< SECTION B-B'>

Tolerance ± 0.1 , Unit: mm

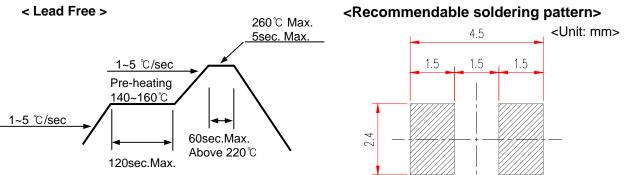
< SECTION A-A'>
7.2 Reel Dimension



IWS-L3512-UR-K1	Version of 2.0	PAGE: 5/10
-----------------	----------------	------------

8. Packing Dimension

Unit :mm


IWS-L3512-UR-K1	Version of 2.0	PAGE: 6/10
-----------------	----------------	------------

9. Precaution in use

9.1 Soldering Conditions

- When soldering Power SMD, Heat may affect the electrical and optical characteristics of the LEDs.
- In soldering, do not stress the lead frame and the resin part under the high temperature.
- The silicone part should be protected from mechanical stress or vibration until the Power SMD return to room temperature after soldering.
- \bullet Preliminary heating to be at 160 $^\circ\!\!\mathbb{C}$ max. for 120 Seconds max.
- Soldering heat to be at 260 $\,^{\circ}\!\!\mathbb{C}\,$ max. for 5 sec. Max.
- \bullet For manual Soldering is Not more than 3 sec @MAX 350 $^\circ\!\mathbb{C}$, under soldering iron

9.2 Storage

- Before opening the package, the LEDs should be kept at 30 °C or less and 70% RH or less.
- The LEDs should be used within a year.
- After opening the package, the LEDs should be kept at 30 °C or less and 30%RH or less.
- The LEDs should be used within 168 hours (7 day) after opening the package.
- If the moisture absorbent material (silicagel) has faded away or the LED have exceeded the storage time, baking treatment should be performed using the following conditions. Baking treatment: 60 °C ±5 for 72 hours.

9.3 Static Electricity

- Static electricity or surge voltage damages the Power SMD. It is recommended that a wrist band or an anti-electrostatic glove be used when handling the LEDs.
- A tip soldering iron is requested to be grounded. An ionizer should also be installed where risk of static.
- All devices, equipment and machinery must be properly grounded (via 1MΩ). It is recommended that measures be taken against surge voltage to the equipment that mounts the Power SMD.

9.4 Cleaning

- Isopropyl Alcohol or Ethylene Alcohol is recommended in 5 minutes at room temperature. Don't use unspecified chemical may cause crack or haze on the surface of the epoxy resin.
- Before cleaning, a pre-test should be done to confirm whether any damage to the LED will occur.
- Freon solvents should not be used to clean the LEDs because of worldwide regulations.

9.5 Heat Generation

- When the LEDs are illuminating, operating current should be decided after being considering the ambient maximum temperature.
- Please consider the heat generation of the LED when it is designed the PCB.

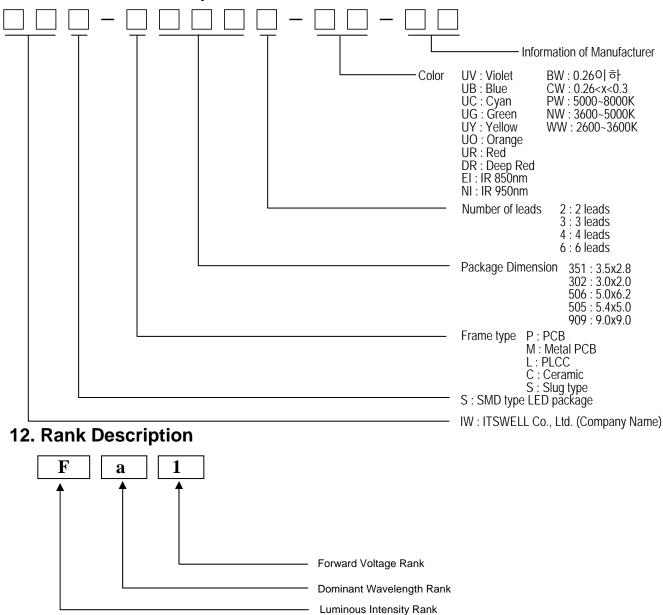
IWS-L3512-UR-K1 V	ersion of 2.0	PAGE: 7 / 10
-------------------	---------------	--------------

10. Reliability

10.1 Reliability Test Item

Test Items	Test Conditions	Notes
High Temperature Storage	100℃, 1,000hr.	0/25
Low Temperature Storage	-40℃, 1,000hr.	0/25
Temp. Humidity Storage	60℃, 90% RH, 1,000hr.	0/25
Steady State Operating life	25℃, 30mA , 1,000hr.	0/25
High Temperature Operating Life	85℃, 10mA, 1,000hr	0/25
Low Temperature Operating Life	-30℃, 20mA, 1,000hr.	0/25
Steady State Operating life Of High Humidity Heat	60℃, 90% RH, 15mA, 1,000hr.	0/25
Thermal Shock	-40 °C (30min)⇔100 °C (30min.), 100 cycle	0/20
ESD	HBM, 100 pF, 1.5 kohm, 3 times	0/20

10.2 Criteria for Judging the Damage


Parameters	Test Conditions	Criteria for judgment
Forward Voltage (V_F)	I _F = 20 mA	Less than 110% of U
Luminous Intensity (I_V)	I _F = 20 mA	> 70% of S

* U means the upper limit of specified characteristics, S means initial value.

IWS-L3512-UR-K1	Version of 2.0	PAGE: 8/10
-----------------	----------------	------------

11. Part Name Description

13. Attention : Electric Static Discharge (ESD) Protection

The symbol shown on the page herein to introduce 'Electro-Optical Characteristics'. ESD protection for GaP and AlGaAs is based chips is still Necessary even though they are safe in low static-electric discharge. Material in AlInGaP, GaP, or/and InGaN based chips are STATIC SENSITIVE devices. ESD protection has to considered and taken in the initial design stage. If manual work/process is needed, please ensure the device is well protective From ESD during all the process.

Spec. Review History

Review Ver.	Date	Correction List	Etc.
Ver 1.0	2009.09.28	Established	
Ver 2.0	2010.04.19	Changed Recommendable soldering pattern & Part Name Description	

IWS-L3512-UR-K1	Version of 2.0	PAGE: 10 / 10
-----------------	----------------	---------------