ECN HISTORY LIST

版別	ECN NO.	變更內容	變更日期	確認章
0		新版本	2022/5/4	領

TEL: 886-2-2689-4971 FAX: 886-2-2689-4260

E-mail: jantek@jantek-elec.com.tw Web-Site: www.jantek-elec.com.tw

SPECIFICATION FOR APPROVAL

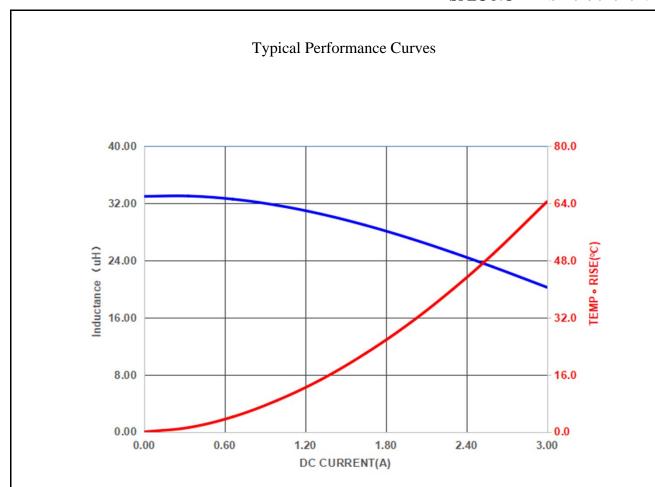
COMMODITY	SMD POWER COIL		SPEC NO.	SP-0190104017
ITEM	JNR 8040H-330M G	reen	版本:A	表單編號:QR-012-02

(1) DIMENSION: (UNIT:			DIM.	TOL.				
					В	8.00	8.00 ±0.3 8.00 ±0.3 3.70 ±0.3 2.40 ±0.3 6.30 ±0.3 INSTRUMENTS. 94A Precision Impedance 85A Precision L.C.R. L.C.R. Meter. 02 Automatic Analyzer. 1 L.C.R. Meter. 2R 6420 Precision alyzer. 20 BIAS CURRENT. 2AC Resistance Merter.	
B - 1	-c-1 <u>r</u>	<u>Е</u> -	D 2.40 ±0.3					
	Ta⊈l la∭				D	2.40	±0.3	
			E 6.30 ±0.3					
† 330								
	_₹ \$) [[
(2) ELECTRICAL CH	ARACTERIST	ГІС		TEST INSTRUMENTS.				
INDUCTANCE	$33 \pm 20\%$, D	μН		AGILENT 4 Analyzer.	294A Precisio	n Impedance	
TEGT ED E OLIENIGIA) AT	☐ AGILENT 4285A Precision L.C.R				
TEST FREQUENCY	1 MHz \square 1			□ F	☐ HP-4286A RF L.C.R. Meter.			
TEST VOLT	1		V	ZENTECH 3302 Automatic Components Analyzer.			С	
				$\Box z$	ZENTECH 1	101 L.C.R. Me	eter.	
RDC	%	mΩ	\Box_{Λ}^{1}	WAYNE KERR 6420 Precision Impedance Analyzer.				
Isat	2.60	(typ)	A		•	•	IRRENT	
1541	2.10	(max)	A					
Irms	2.30	(typ)	A					
111115	2.10	(max)	А	ADEX AX-1155B DC Low Oh			Onm Meter.	
DEL CADIC								

REMARK:

- 1. All test data referenced to 25°C ambient
- 2. Isat: Saturation Current (Isat) will cause L0 to drop approximately 30%.
- 3. Irms: Heat Rated Current (Irms) will cause the coil temperature rise approximately ΔT of 40°C

PURCHASER CONFIRMED	APPROVED	CHECKED	DRAWN
	提達	赛	療用



TEL: 886-2-2689-4971 FAX: 886-2-2689-4260

E-mail: jantek@jantek-elec.com.tw Web-Site: www.jantek-elec.com.tw

TEST REPORT

SPEC NO: SP-0190104017

Test Instrument:

ZENTECH 3302 Automatic Components Analyzer

ZENTECH 1320 BIAS CURRENT

Testing Condition:

Temperature : $25 \text{ to } 28^{\circ}\mathbb{C}$ Humidity : 60 to 70 % RH

Check by:

Test by:

E-mail: jantek@jantek-elec.com.tw Web-Site: www.jantek-elec.com.tw

Reliability and Test Condition

Item	Performance	Test Condition				
Electrical Performance	: Test					
Inductance	Refer to standard electrical characteristics	HP4284A,CH11025,CH3302,CH1320,CH1320S LCR Mete				
DCR	list	CH16502,Agilent33420A Micro-Ohm Meter				
Saturation Current (Isat)	Approximately △L30%.	Saturation DC Current (Isat) will cause L0 to drop △L(%)				
Heat Rated Current (Irms)	Approximately $ riangle$ T40 $^{\circ}$ C	Heat Rated Current (Irms) will cause the coil temperature rise △T(°C) without core loss. 1.Applied the allowed DC current 2.Temperature measured by digital surface thermometer				
Operating Temperature	-40°C~+125°C (Including self - temperature	rise)				
Storage Temperature	110~+40℃,50~60% RH (Product without ta 240~+125℃ (on board)	aping)				
Reliability Test						
Life Test		Preconditioning: Run through IR reflow for 2 times. (IPC/JEDEC J-STD-020D Classification Reflow Profiles) Temperature: 125±2°C (Inductor) Applied current: rated current Duration: 1000±12hrs Measured at room temperature after placing for 24±2 hrs				
Load Humidity		Preconditioning: Run through IR reflow for 2 times. (IPC/JEDEC J-STD-020D Classification Reflow Profiles) Humidity: 85±2% R.H Temperature: 85°C±2°C Duration: 1000hrs Min. with 100% rated current Measured at room temperature after placing for 24±2 hrs				
Moisture Resistance	Appearance: No damage Inductance: within±10% of initial value Q: Shall not exceed the specification value RDC: within ±15% of initial value and shall not exceed the specification value	Preconditioning: Run through IR reflow for 2 times. (IPC/JEDEC J-STD-020D Classification Reflow Profiles) 1. Baked at50°C for 25hrs, measured at room temperature after placing for 4 hrs. 2. Raise temperature to 65±2°C 90-100%RH in 2.5hrs, and keep 3 hours, cool down to 25°C in 2.5hrs. 3. Raise temperature to 65±2°C 90-100%RH in 2.5hrs, and keep 3 hours, cool down to 25°C in 2.5hrs, keep at 25°C for 2 hrs then keep at -10°C for 3 hrs 4. Keep at 25°C 80-100%RH for 15min and vibrate at the frequency of 10 to 55 Hz to 10 Hz, measure at room temperature after placing for 1~2 hrs.				
Thermal shock		Preconditioning: Run through IR reflow for 2 times. (IPC/JEDEC J-STD-020D Classification Reflow Profiles) Condition for 1 cycle Step1: $-40\pm2^{\circ}$ C 30 ± 5 min Step2: $25\pm2^{\circ}$ C ≤ 0.5 min Step3: $125\pm2^{\circ}$ C 30 ± 5 min Number of cycles: 500 Measured at room temperature after placing for 24 ± 2 hrs				
Vibration		Oscillation Frequency: 10~2K~10Hz for 20 minutes Equipment: Vibration checker Total Amplitude:1.52mm±10% Testing Time: 12 hours(20 minutes, 12 cycles each of 3 orientations)				

Reliability and Test Condition

Item Performance			Test Condition					
Reliability Test								
Appearance: No damage. Inductance: within±10% of initial value Q: Shall not exceed the specification value	-	Type SMD Lead	Peak value (g's) 50	Normal duration (D) (ms) 11	- Wave form Half-sine Half-sine	Velocity change (Vi)ft/sec 11.3 11.3		
RDC: within ±15% of initial value and shall not exceed the specification value	Shall be mounted on a FR4 substrate of the following dimensions: >=0805 inch(2012mm):40x100x1.2mm <0805 inch(2012mm):40x100x0.8mm Bending depth: >=0805 inch(2012mm):1.2mm <0805 inch(2012mm):0.8mm duration of 10 sec.							
More than 95% of the terminal electrode should be covered with solder	Preheat: 150°C,60sec Solder: Sn96.5% Ag3% Cu0.5% Temperature: 245±5°C Flux for lead free: Rosin. 9.5% Dip time: 4±1sec Depth: completely cover the termination							
		Temperature (°C)	e Time (s)	Tempe ramp/i and er	mmersion mersion rate			
Appearance: No damage. Inductance: within±10% of initial value Q: Shall not exceed the specification value RDC: within ±15% of initial value and shall not exceed the specification value	Preconditioning:Run through IR reflow for 2 times (IPC/JEDEC J-STD-020D Classification Reflow Profiles) With the component mounted on a PCB with the device to be tested, apply a force (>0805 inch(2012mm):1kg, <=0805 inch(2012mm):0.5kg)to the side of a device being tested. This force shall be applied for 60 +1 seconds. Also the force shall be applied gradually as not to apply a shock to the component being tested.			v Profiles) e device to 1kg , evice being conds. to apply				
	Appearance: No damage. Inductance: within±10% of initial value Q: Shall not exceed the specification value RDC: within ±15% of initial value and shall not exceed the specification value More than 95% of the terminal electrode should be covered with solder Appearance: No damage. Inductance: within±10% of initial value Q: Shall not exceed the specification value RDC: within ±15% of initial value and	Appearance: No damage. Inductance: within±10% of initial value Q: Shall not exceed the specification value RDC: within±15% of initial value and shall not exceed the specification value More than 95% of the terminal electrode should be covered with solder More than 95% of the terminal electrode should be covered with solder N Appearance: No damage. Inductance: within±10% of initial value Q: Shall not exceed the specification value RDC: within±15% of initial value and	Appearance: No damage. Inductance: within±10% of initial value Q: Shall not exceed the specification value RDC: within±15% of initial value and shall not exceed the specification value More than 95% of the terminal electrode should be covered with solder More than 95% of the terminal electrode should be covered with solder More than 95% of the terminal electrode should be covered with solder More than 95% of the terminal electrode should be covered with solder Preheat: 150 Solder: Sn96 Temperature Flux for lead Dip time: 4±1 Depth: comp Number of he Temperature (°C) 260 ±5 (solder temperature) Inductance: within±10% of initial value Q: Shall not exceed the specification value RDC: within ±15% of initial value and shall not exceed the specification value D D	Appearance: No damage. Inductance: within±10% of initial value Q: Shall not exceed the specification value RDC: within ±15% of initial value and shall not exceed the specification value More than 95% of the terminal electrode should be covered with solder More than 95% of the terminal electrode should be covered with solder More than 95% of the terminal electrode should be covered with solder More than 95% of initial value Shall not exceed the specification value Q: Shall not exceed the specification value RDC: within ±15% of initial value and shall not exceed the specification value Differentiation value Peak value (g's) SMD	Appearance: No damage. Inductance: within±10% of initial value Q: Shall not exceed the specification value RDC: within ±15% of initial value and shall not exceed the specification value More than 95% of the terminal electrode should be covered with solder More than 95% of the terminal electrode should be covered with solder More than 95% of the terminal electrode should be covered with solder More than 95% of the terminal electrode should be covered with solder More than 95% of the terminal electrode should be covered with solder More than 95% of the terminal electrode should be covered with solder More than 95% of the terminal electrode should be covered with solder More than 95% of the terminal electrode should be covered with solder More than 95% of the terminal electrode should be covered with solder More than 95% of the terminal electrode should be covered with solder More than 95% of the terminal electrode solder: Sn96.5% Ag3% Cu0.5% Temperature: 245±5°C Flux for lead free: Rosin. 9.5% Dip time: 4±1sec Depth: completely cover the termin Number of heat cycles: 1 Temperature Time Temperature (°C) (s) and electrode (s) and electrod	Appearance: No damage. Inductance: within±10% of initial value Q: Shall not exceed the specification value RDC: within ±15% of initial value and shall not exceed the specification value More than 95% of the terminal electrode should be covered with solder More than 95% of the terminal electrode should be covered with solder More than 95% of initial value Q: Shall not exceed the specification value More than 95% of initial value Q: Shall not exceed the specification value More than 95% of initial value Q: Shall not exceed the specification value Appearance: No damage. Inductance: within±10% of initial value Q: Shall not exceed the specification value Appearance: No damage. Inductance: within±15% of initial value Q: Shall not exceed the specification value Appearance into the specification value Appearance: No damage. Inductance: within±15% of initial value and shall not exceed the specification value Appearance: No damage. Inductance: within±15% of initial value and shall not exceed the specification value Appearance: No damage. Inductance: within±15% of initial value Q: Shall not exceed the specification value Appearance: No damage. Inductance: within±15% of initial value and shall not exceed the specification value Appearance: No damage. Inductance: within±15% of initial value and shall not exceed the specification value Appearance: No damage. Inductance: within±15% of initial value and shall not exceed the specification value Appearance: No damage. Inductance: within±15% of initial value and shall not exceed the specification value Appearance: No damage. Inductance: within±15% of initial value and shall not exceed the specification value Appearance: No damage. Inductance: within±15% of initial value and shall not exceed the specification value Appearance: No damage. Inductance: within±15% of initial value and shall not exceed the specification value Appearance: No damage. Inductance: within±15% of initial value and shall not exceed the specification value Appearance: No damage. I		

Note : When there are questions concerning measurement result measurement shall be made after 48 ± 2 hours Of recovery under the standard condition.

Reliability and Test Condition

Item	Performance Test Condition					
Reliability Test						
Soldering		ANTEK terminations are suitable for all wave and cannot be avoided, the preferred technique is the				
Lead Free Solder re- flow:	Recommended temperature profiles for re-flow soldering in Figure 1.					
Soldering Iron:						
Reflow Soldering PRE-HE/ tp(245°C / 20~40 217 200 150 60~180	COOLING TP(260°C / 10s max.)	Iron Soldering PRE-HEATING SOLDERING NATURAL COOLING within 3s 350 300 150				

Fig.1

TIME(sec.)

480s max.

Over 60s Gradual cooling
TIME(sec.)

Fig.2